The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming.
نویسندگان
چکیده
Neural activity actively regulates muscle gene expression. This regulation is crucial for specifying muscle functionality and synaptic protein expression. How neural activity is relayed into nuclei and connected to the muscle transcriptional machinery, however, is not known. Here we identify the histone deacetylase HDAC4 as the critical linker connecting neural activity to muscle transcription. We found that HDAC4 is normally concentrated at the neuromuscular junction (NMJ), where nerve innervates muscle. Remarkably, reduced neural input by surgical denervation or neuromuscular diseases dissociates HDAC4 from the NMJ and dramatically induces its expression, leading to robust HDAC4 nuclear accumulation. We present evidence that nuclear accumulated HDAC4 is responsible for the coordinated induction of synaptic genes upon denervation. Inactivation of HDAC4 prevents denervation-induced synaptic acetyl-choline receptor (nAChR) and MUSK transcription whereas forced expression of HDAC4 mimics denervation and activates ectopic nAChR transcription throughout myofibers. We determined that HDAC4 executes activity-dependent transcription by regulating the Dach2-myogenin transcriptional cascade where inhibition of the repressor Dach2 by HDAC4 permits the induction of the transcription factor myogenin, which in turn activates synaptic gene expression. Our findings establish HDAC4 as a neural activity-regulated deacetylase and a key signaling component that relays neural activity to the muscle transcriptional machinery.
منابع مشابه
The deacetylase HDAC4 controls myocyte enhancing factor-2-dependent structural gene expression in response to neural activity.
Histone deacetylase 4 (HDAC4) binds and inhibits activation of the critical muscle transcription factor myocyte enhancer factor-2 (MEF2). However, the physiological significance of the HDAC4-MEF2 complex in skeletal muscle has not been established. Here we show that in skeletal muscle, HDAC4 is a critical modulator of MEF2-dependent structural and contractile gene expression in response to neur...
متن کاملHDAC4 deacetylase associates with and represses the MEF2 transcription factor.
The acetylation state of histones can influence transcription. Acetylation, carried out by acetyltransferases such as CBP/p300 and P/CAF, is commonly associated with transcriptional stimulation, whereas deacetylation, mediated by the three known human deacetylases HDAC1, 2 and 3, causes transcriptional repression. The known human deacetylases represent a single family and are homologues of the ...
متن کاملPC4 coactivates MyoD by relieving the histone deacetylase 4-mediated inhibition of myocyte enhancer factor 2C.
Histone deacetylase 4 (HDAC4) negatively regulates skeletal myogenesis by associating with the myocyte enhancer factor 2 (MEF2) transcription factors. Our data indicate that the gene PC4 (interferon-related developmental regulator 1 [IFRD1], Tis7), which we have previously shown to be required for myoblast differentiation, is both induced by MyoD and potentiates the transcriptional activity of ...
متن کاملHDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor.
Histone acetylation plays an important role in regulating chromatin structure and thus gene expression. Here we describe the functional characterization of HDAC4, a human histone deacetylase whose C-terminal part displays significant sequence similarity to the deacetylase domain of yeast HDA1. HDAC4 is expressed in various adult human tissues, and its gene is located at chromosome band 2q37. HD...
متن کاملCalcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4.
The myocyte enhancer factor 2 (MEF2) consists of a family of transcription factors that play important roles in a number of physiological processes from muscle cell differentiation to neuronal survival and T cell apoptosis. MEF2 has been reported to be associated with several distinct repressors including Cabin1(cain), MEF2-interacting transcriptional repressor (MITR), and HDAC4. It has been pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 46 شماره
صفحات -
تاریخ انتشار 2007